MATH 2230 Complex Variables with Applications (2014-2015, Term 1) Suggested Solution to HW2

1. (SEC. 18, No.5)

Proof: When $z=(x, 0)$ is a nonzero point on the real axis,

$$
f(z)=\left(\frac{x+i 0}{x-i 0}\right)^{2}=1
$$

When $z=(0, y)$ is a nonzero point on the imaginary axis,

$$
f(z)=\left(\frac{0+i y}{0-i y}\right)^{2}=1 .
$$

When $z=(x, x)$ is a nonzero point on the line $y=x$,

$$
f(z)=\left(\frac{x+i x}{x-i x}\right)^{2}=\left(\frac{1+i}{1-i}\right)^{2}=-1 .
$$

Thus, the limit of $f(z)$ as z tends to 0 does not exist.
2. (SEC.18,No.10)

Solution: (a) By theorem in Sec.17, we have

$$
\lim _{z \rightarrow \infty} \frac{4 z^{2}}{(z-1)^{2}}=4 \text { since } \lim _{z \rightarrow 0} \frac{4\left(\frac{1}{z}\right)^{2}}{\left(\frac{1}{z}-1\right)^{2}}=\lim _{z \rightarrow 0} \frac{4}{(1-z)^{2}}=4
$$

(b) By theorem in Sec.17, we have

$$
\lim _{z \rightarrow 1} \frac{1}{(z-1)^{3}}=\infty \text { since } \lim _{z \rightarrow 1}(z-1)^{3}=0
$$

(c) By theorem in Sec.17, we have

$$
\lim _{z \rightarrow \infty} \frac{z^{2}+1}{z-1}=\infty \text { since } \lim _{z \rightarrow 0} \frac{\frac{1}{z}-1}{\left(\frac{1}{z}\right)^{2}+1}=\lim _{z \rightarrow 0} \frac{z-z^{2}}{1+z^{2}}=0 .
$$

3. (SEC.18,No.11)

Proof: (a) Since

$$
\lim _{z \rightarrow \infty} \frac{1}{T\left(\frac{1}{z}\right)}=\lim _{z \rightarrow 0} \frac{\frac{c}{z}+d}{\frac{a}{z}+b}=\lim _{z \rightarrow 0} \frac{c+d z}{a+b z}=0(a \neq 0 \text { since } a d-b c \neq 0 \text { and } c=0)
$$

We have

$$
\lim _{z \rightarrow \infty} T(z)=\infty
$$

(b) Since

$$
\lim _{z \rightarrow 0} T\left(\frac{1}{z}\right)=\lim _{z \rightarrow 0} \frac{\frac{a}{z}+b}{\frac{c}{z}+d}=\lim _{z \rightarrow 0} \frac{a+b z}{c+d z}=\frac{a}{c}(\text { since } c \neq 0)
$$

We have

$$
\lim _{z \rightarrow \infty} T(z)=\frac{a}{c}
$$

And since

$$
\lim _{z \rightarrow-\frac{d}{c}} \frac{1}{T(z)}=\lim _{z \rightarrow-\frac{d}{c}} \frac{c z+d}{a z+b}=0(\text { since } a d-b c \neq 0)
$$

We have

$$
\lim _{z \rightarrow-\frac{d}{c}} T(z)=\infty
$$

4. (SEC.20,No.8)

Proof: Refer to Page 56 on the textbook.
5. (SEC.20,No.9)

Proof:

$$
\frac{\Delta w}{\Delta z}=\left(\frac{\overline{\Delta z}}{\Delta z}\right)^{2}
$$

If $\triangle z=(\triangle x, 0)$, then

$$
\frac{\Delta w}{\triangle z}=\left(\frac{\triangle x}{\triangle x}\right)^{2}=1
$$

If $\Delta z=(0, \Delta y)$, then

$$
\frac{\Delta w}{\triangle z}=\left(\frac{-i \Delta y}{i \triangle y}\right)^{2}=1
$$

If $\triangle z=(\triangle x, \Delta x)$, then

$$
\frac{\Delta w}{\triangle z}=\left(\frac{\triangle x-i \triangle x}{\triangle x+i \triangle x}\right)^{2}=-1
$$

Thus, $f^{\prime}(0)$ does not exist.
6. (SEC.24,No.2)

Remark: Refer to Sec. 23 on the textbook.

